Read Article
Related Articles
Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid.
Nguyen LN
et al.
Nature
2014
Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.
Wong BH
et al.
Journal of Biological Chemistry
2016
Structural Insights into the Transport Mechanism of the Human Sodium-dependent Lysophosphatidylcholine Transporter MFSD2A.
Quek DQ
et al.
Journal of Biological Chemistry
2016
Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome
Alicia Guemez-Gamboa 1
et al.
Nature Genetics
2015
A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome
Vafa Alakbarzade
et al.
Nature Genetics
2015
Insights into major facilitator superfamily domain-contaning protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far?
Eser Ocak P
et al.
Journal of Neuroscience Research
2020
Mfsd2a is critical for the formation and function of the blood-brain barrier
Ayal Ben-Zvi
et al.
Nature
2014
Major facilitator superfamily domain-containing protein 2a (MFSD2A) has roles in body growth, motor function, and lipid metabolism
Justin H Berger
et al.
PLoS ONE
2012
The Lysophosphatidylcholine Transporter MFSD2A Is Essential for CD8 + Memory T Cell Maintenance and Secondary Response to Infection
Ann R Piccirillo
et al.
J Immunol
2019
Lysophosphatidylcholine as a carrier of docosahexaenoic acid to target tissues
M Lagarde
et al.
World Rev Nutr Diet
2001
Plasma BDNF is a more reliable biomarker than erythrocyte omega-3 index for the omega-3 fatty acid enrichment of brain
Dhavamani Sugasini
et al.
Scientific Reports
2020
Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis
Benjamin J Andreone
et al.
Neuron
2017
Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis
Benjamin J Andreone
et al.
Neuron
2017
Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation
Brian Wai Chow
et al.
Neuron
2017
The Cellular and Molecular Landscapes of the Developing Human Central Nervous System
John C Silbereis
et al.
Neuron
2016
Blood-brain barrier: a dual life of MFSD2A?
Zhao Z
et al.
Neuron
2014
Lipidomics reveals a remarkable diversity of lipids in human plasma
Oswald Quehenberger
et al.
J Lipid Res.
2010
A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2
Cécile Esnault
et al.
Proc Natl Acad Sci USA
2008
Characterization of plasma unsaturated lysophosphatidylcholines in human and rat
M Croset
et al.
Biochem J.
2000
The uptake and metabolism of plasma lysophosphatidylcholine in vivo by the brain of squirrel monkeys
D R Illingworth, O W Portman
et al.
Biochem J .
1972
Transport of lysolecithin by albumin in human and rat plasma
S Switzer
et al.
The Journal of Lipid Research
1965
Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin
Lands W E
et al.
J Biol Chem.
1960
Neuron . 2017 May 3;94(3):581-594.e5. doi: 10.1016/j.neuron.2017.03.043. Epub 2017 Apr 13.

Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis

May 3, 2017
Benjamin J Andreone 1, Brian Wai Chow 1, Aleksandra Tata 1, Baptiste Lacoste 1, Ayal Ben-Zvi 1, Kevin Bullock 2, Amy A Deik 2, David D Ginty 3, Clary B Clish 2, Chenghua Gu 4

1Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.

2Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

3Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.

4Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. Electronic address: chenghua_gu@hms.harvard.edu.

Abstract

The blood-brain barrier (BBB) provides a constant homeostatic brain environment that is essential for proper neural function. An unusually low rate of vesicular transport (transcytosis) has been identified as one of the two unique properties of CNS endothelial cells, relative to peripheral endothelial cells, that maintain the restrictive quality of the BBB. However, it is not known how this low rate of transcytosis is achieved. Here we provide a mechanism whereby the regulation of CNS endothelial cell lipid composition specifically inhibits the caveolae-mediated transcytotic route readily used in the periphery. An unbiased lipidomic analysis reveals significant differences in endothelial cell lipid signatures from the CNS and periphery, which underlie a suppression of caveolae vesicle formation and trafficking in brain endothelial cells. Furthermore, lipids transported by Mfsd2a establish a unique lipid environment that inhibits caveolae vesicle formation in CNS endothelial cells to suppress transcytosis and ensure BBB integrity.

Keywords
Blood-brain barrier
Major facilitator superfamily domain containing 2a (Mfsd2a)
RELATED